11 research outputs found

    A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultrastrong coupling regime

    Get PDF
    We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a single photon in the cavity causes a shift in the mechanical resonator position on the order of its zero point motion. As a result, the cavity-Cooper pair transistor coupled to a mechanical resonator will be able to access a regime in which single photons can affect single phonons and vice versa. Realizing this ultra strong coupling regime will facilitate the creation of non-classical states of the mechanical resonator, as well as the means to accurately characterize such states by measuring the cavity photon field

    Hall Conductivity near the z=2 Superconductor-Insulator Transition in 2D

    Full text link
    We analyze here the behavior of the Hall conductivity σxy\sigma_{xy} near a z=2z=2 insulator-superconductor quantum critical point in a perpendicular magnetic field. We show that the form of the conductivity is sensitive to the presence of dissipation η\eta, and depends non-monotonically on HH once η\eta is weak enough. σxy\sigma_{xy} passes through a maximum at HηTH \sim \eta T in the quantum critical regime, suggesting that the limits H0H \to 0 and η0\eta \to 0 do not commute.Comment: 4 pages, 1 .eps figure, to appear in Phys. Rev.

    Temperature and ac Effects on Charge Transport in Metallic Arrays of Dots

    Full text link
    We investigate the effects of finite temperature, dc pulse, and ac drives on the charge transport in metallic arrays using numerical simulations. For finite temperatures there is a finite conduction threshold which decreases linearly with temperature. Additionally we find a quadratic scaling of the current-voltage curves which is independent of temperature for finite thresholds. These results are in excellent agreement with recent experiments on 2D metallic dot arrays. We have also investigated the effects of an ac drive as well as a suddenly applied dc drive. With an ac drive the conduction threshold decreases for fixed frequency and increasing amplitude and saturates for fixed amplitude and increasing frequency. For sudden applied dc drives below threshold we observe a long time power law conduction decay.Comment: 6 pages, 7 postscript figure

    Superconductor-insulator quantum phase transition in a single Josephson junction

    Full text link
    The superconductor-to-insulator quantum phase transition in resistively shunted Josephson junctions is investigated by means of path-integral Monte Carlo simulations. This numerical technique allows us to directly access the (previously unexplored) regime of the Josephson-to-charging energy ratios E_J/E_C of order one. Our results unambiguously support an earlier theoretical conjecture, based on renormalization-group calculations, that at T -> 0 the dissipative phase transition occurs at a universal value of the shunt resistance R_S = h/4e^2 for all values E_J/E_C. On the other hand, finite-temperature effects are shown to turn this phase transition into a crossover, which position depends significantly on E_J/E_C, as well as on the dissipation strength and on temperature. The latter effect needs to be taken into account in order to reconcile earlier theoretical predictions with recent experimental results.Comment: 7 pages, 6 figure

    Superconductor-Insulator Transition in a Capacitively Coupled Dissipative Environment

    Full text link
    We present results on disordered amorphous films which are expected to undergo a field-tuned Superconductor-Insulator Transition.The addition of a parallel ground plane in proximity to the film changes the character of the transition.Although the screening effects expected from "dirty-boson" theories are not evident,there is evidence that the ground plane couples a certain type of dissipation into the system,causing a dissipation-induced phase transition.The dissipation due to the phase transition couples similarly into quantum phase transition systems such as superconductor-insulator transitions and Josephson junction arrays.Comment: 4 pages, 4 figure

    Experimental implications of quantum phase fluctuations in layered superconductors

    Full text link
    I study the effect of quantum and thermal phase fluctuations on the in-plane and c-axis superfluid stiffness of layered d-wave superconductors. First, I show that quantum phase fluctuations in the superconductor can be damped in the presence of external screening of Coulomb interactions, and suggest an experiment to test the importance of these fluctuations, by placing a metal in close proximity to the superconductor to induce such screening. Second, I show that a combination of quantum phase fluctuations and the linear temperature dependence of the in-plane superfluid stiffness leads to a linear temperature dependence of the c-axis penetration depth, below a temperature scale determined by the magnitude of in-plane dissipation.Comment: 6 pgs, 1 figure, minor changes in comparison with c-axis expt, final published versio
    corecore